Inferência bayesiana em modelos de volatilidade estocástica usando métodos de Monte Carlo Hamiltoniano
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa Interinstitucional de Pós-Graduação em Estatística - PIPGEs
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/10565 |
Resumo: | This paper presents a study using Bayesian approach in stochastic volatility models for modeling financial time series, using Hamiltonian Monte Carlo methods (HMC). We propose the use of other distributions for the errors of the equation at stochastic volatiliy model, besides the Gaussian distribution, to treat the problem as heavy tails and asymmetry in the returns. Moreover, we use recently developed information criteria WAIC and LOO that approximate the crossvalidation methodology, to perform the selection of models. Throughout this work, we study the quality of the HMC methods through examples, simulation study and application to dataset. In addition, we evaluated the performance of the proposed models and methods by calculating estimates for Value at Risk (VaR) for multiple time horizons. |