Modelagem da volatilidade em séries temporais financeiras via modelos GARCH com abordagem Bayesiana

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Gutierrez, Karen Fiorella Aquino
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/104/104131/tde-13112017-160115/
Resumo: Nas últimas décadas a volatilidade transformou-se num conceito muito importante na área financeira, sendo utilizada para mensurar o risco de instrumentos financeiros. Neste trabalho, o foco de estudo é a modelagem da volatilidade, que faz referência à variabilidade dos retornos, sendo esta uma característica presente nas séries temporais financeiras. Como ferramenta fundamental da modelação usaremos o modelo GARCH (Generalized Autoregressive Conditional Heteroskedasticity), que usa a heterocedasticidade condicional como uma medida da volatilidade. Considerar-se-ão duas características principais a ser modeladas com o propósito de obter um melhor ajuste e previsão da volatilidade, estas são: a assimetria e as caudas pesadas presentes na distribuição incondicional da série dos retornos. A estimação dos parâmetros dos modelos propostos será feita utilizando a abordagem Bayesiana com a metodologia MCMC (Markov Chain Monte Carlo) especificamente o algoritmo de Metropolis-Hastings.