Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Nacinben, João Pedro Coli de Souza Monteneri |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/96/96131/tde-05102023-141604/
|
Resumo: |
A presente dissertação discute uma possível extensão multivariada para modelos de volatilidade estocástica estimados com o uso de aproximações de Laplace aninhadas integradas (INLA). As já consagradas técnicas baseadas em simulações, tais como Monte Carlo via Cadeias de Markov (MCMC), podem ser proibitivas ou pouco eficientes em tempo computacional, conforme o número de observações e a dimensionalidade do problema aumentam, além de não estarem livres de problemas de convergência de cadeia. Nesse sentido, o trabalho objetiva o estabelecimento de uma forma mais computacionalmente eficiente de estimar modelos multivariados de volatilidade estocástica, propondo-se, para tanto, uma formulação multifatorial estimada a partir da metodologia INLA, permitindo uma abordagem que explora álgebra linear esparsa e paralelização. Os ganhos de eficiência com o modelo proposto são avaliados em testes realizados por meio de estudo de simulações e análise empírica de séries de retornos de índices de bolsa de valores, sendo então comparados com os resultados de um modelo multivariado e fatorial estimado por MCMC. |