Estudo da utilização de estimadores com problemas de estimabilidade e aplicações

Detalhes bibliográficos
Ano de defesa: 1995
Autor(a) principal: Costa, Paulo Afonso Bracarense
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20191218-154722/
Resumo: No presente trabalho, objetivou-se avaliar a importância do erro que se comete ao se tomar estimadores viciados dos parâmetros do particular modelo linear de regressão múltipla. Algumas combinações lineares dos parâmetros (λ’&#946) são determinadas através de combinações lineares dos dados observados. Neste contexto adota-se a definição de RAO (1945) que a função linear λ’&#946 é linearmente estimável se existe um vetor “α" tal que E(α’ϒ) = λ’β, para todos os possíveis β ∈ ℝP, ou seja, se α’ϒ é um estimador não tendencioso de λ’β. Ocorre, no entanto, que muitas vezes, não e possível encontrar combinações Iineares que obedeçam os pressupostos do Teorema de Gauss-Markov. E nestas circunstâncias, os parâmetros não são estimáveis, e o problema não pode mais ser estudado no contexto da teoria de modelos lineares. Foi realizada uma avaliação da importância do erro que se comete ao se tomarem combinações lineares (α’ϒ) que não obedecessem àqueles pressupostos e buscar soluções que contornassem o problema de estimabilidade. Foi verificada então a possibilidade de se trabalhar com "quase-estimabilidade", conceito que pode ser compreendido quando se toma λ bastante "próximo" do espaço-linha da matriz X do modelo. O método utilizado foi o da decomposição em valores singulares (DVS) da matriz do modelo. Através dele foi possível compreender a estrutura da matriz e obter algoritmos estáveis para os cálculos realizados. Foi apresentada uma aplicação em bioestatística em um estudo de diabete.