Contribuição à geometria analítica dos estimadores Lasso e Elastic Net

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Carvalho, Laerte Dias de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Lavras
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://locus.ufv.br//handle/123456789/28382
Resumo: Os métodos de estimação e seleção de variáveis em modelos lineares LASSO (Least Absolute Shrin- kage and Selection Operator)(1996) e Elastic Net (2005) são atualmente amplamente utilizados. Usualmente apresentados como solução de problemas variacionais, nesse trabalho são obtidos utilizando uma abordagem geométrica. Tal abordagem possibilitou a obtenção de propriedades relativas à geometria analítica do método de sua construção o que permitiu uma relação entre o estimador Elastic Net e o estimador Ridge. Também é apresentado um algoritmo para obter o estimador LASSO. Palavras-chave: Estimadores Ridge. Geometria de Modelos Lineares. Estimadores de encolhimento.