Detalhes bibliográficos
Ano de defesa: |
1989 |
Autor(a) principal: |
Ferrari, Fernando |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://teses.usp.br/teses/disponiveis/11/11134/tde-20200111-132820/
|
Resumo: |
No presente trabalho, analisou-se o desempenho de dois estimadores viesados, a saber, o estimador sobre cristas e o estimador em componentes principais, como métodos alternativos ao estimador de mínimos quadrados no ajuste de modelos de regressão, quando os dados têm problemas de multicolinearidade. Para tanto, considerou-se o modelo de regressão linear múltipla: Y = Xβ + ε onde, y = vetor de observações da variável dependente na forma padronizada, de dimensões nx1. X = Matriz dos valores das variáveis independentes na forma padronizada, de dimensões nxp, de posto p < n; β = Vetor de constantes desconhecidas, de dimensões px1 ; ε = vetor de erros aleatórios não observáveis, de dimensões nx1, tal que E(ε) = Ø e E(εε) = σ2 In. Como as variáveis independentes e a variável dependente são consideradas na forma padronizada, XX é a matriz de correlações entre as variáveis independentes , e X y é o vetor de correlações entre as variáveis independentes e a variável dependente. Para obter-se uma maior abrangência nas comparações entre os estimadores adotados, procedeu-se a um estudo de simulação, onde foram analisados dois modelos distintos, conforme o número p de variáveis independentes envolvidas. Também foram analisados dois valores para o número n de observações sobre cada variável independente. Em cada um desses modelos, foram considerados quatro configurações, segundo uma estrutura de correlação, que foi estabelecida entre as variáveis independentes. Como critérios de comparações, entre os métodos de estimação abordados, consideraram-se: |