Estimadores viesados para modelos de regressão em presença de multicolinearidade

Detalhes bibliográficos
Ano de defesa: 1989
Autor(a) principal: Ferrari, Fernando
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/11/11134/tde-20200111-132820/
Resumo: No presente trabalho, analisou-se o desempenho de dois estimadores viesados, a saber, o estimador sobre cristas e o estimador em componentes principais, como métodos alternativos ao estimador de mínimos quadrados no ajuste de modelos de regressão, quando os dados têm problemas de multicolinearidade. Para tanto, considerou-se o modelo de regressão linear múltipla: Y = X&#946; + &#949; onde, y = vetor de observações da variável dependente na forma padronizada, de dimensões nx1. X = Matriz dos valores das variáveis independentes na forma padronizada, de dimensões nxp, de posto p < n; &#946; = Vetor de constantes desconhecidas, de dimensões px1 ; &#949; = vetor de erros aleatórios não observáveis, de dimensões nx1, tal que E(&#949;) = &#216; e E(&#949;&#949;’) = &#963;2 In. Como as variáveis independentes e a variável dependente são consideradas na forma padronizada, X’X é a matriz de correlações entre as variáveis independentes , e X’ y é o vetor de correlações entre as variáveis independentes e a variável dependente. Para obter-se uma maior abrangência nas comparações entre os estimadores adotados, procedeu-se a um estudo de simulação, onde foram analisados dois modelos distintos, conforme o número p de variáveis independentes envolvidas. Também foram analisados dois valores para o número n de observações sobre cada variável independente. Em cada um desses modelos, foram considerados quatro configurações, segundo uma estrutura de correlação, que foi estabelecida entre as variáveis independentes. Como critérios de comparações, entre os métodos de estimação abordados, consideraram-se: