Convergência de conjuntos de nível de polinômios homogêneos

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Benites, Guilherme Rafael Antonelli Molina
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45131/tde-20210729-144811/
Resumo: O objetivo principal deste trabalho é estudar algumas caracterizações das convergências pontual e uniforme de seqüências de polinômios homogêneos em espaços de Banch através de alguns tipos de convergência topológica de seus conjuntos de nível. Para isso, definimos alguns tipos de convergência de conjuntos e analisamos suas principais propriedades. Inicialmente, encontramos caracterizações de convergências de funcionais lineares contínuos, que são generalizadas para o contexto de polinômios homogêneos, tanto no caso real como no caso complexo. Esse trabalho é baseado no texto científico de J. Ferrera, publicado em 1998 no periódico 'Transactions of the American Mathematical Society', v.350.