Tipos de holomorfia em Espaços de Banach
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Uberlândia
BR Programa de Pós-graduação em Matemática Ciências Exatas e da Terra UFU |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufu.br/handle/123456789/16817 https://doi.org/10.14393/ufu.di.2014.530 |
Resumo: | The main purpose of this dissertation is to study the theory of holomorphy types between Banach spaces, mainly the differentiation of holomorphy types and the interplay between holomorphy types and ideals of homogeneous polynomials. To do so we first study continuous multilinear mappings and homogeneous polynomials between Banach spaces. Then we define and give examples of holomorphy types. Next we study the differentiation of holomorphy types as a method to generate new holomorphy types from a given one and we brie y study holomorphic functions associated to a given holomorphy type. Finally we show that every Banach ideal of homogeneous polynomials with property (B) is a holomorphy type and that, in the complex case, a closed ideal of polynomials is a holomorphy type if and only if it has property (B). We finish the work proving that, surprisingly, in the real case no closed ideal of polynomials has property (B). |