Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Oshiro, Thais Mayumi |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/95/95131/tde-15102013-183234/
|
Resumo: |
Random Forest é uma técnica computacionalmente eciente que pode operar rapida-mente sobre grandes bases de dados. Ela tem sido usada em muitos projetos de pesquisa recentes e aplicações do mundo real em diversos domínios, entre eles a bioinformática uma vez que a Random Forest consegue lidar com bases que apresentam muitos atributos e poucos exemplos. Porém, ela é de difícil compreensão para especialistas humanos de diversas áreas. A pesquisa de mestrado aqui relatada tem como objetivo criar um modelo simbólico, ou seja, uma única árvore a partir da Random Forest para a classicação de bases de dados de expressão gênica. Almeja-se assim, aumentar a compreensão por parte dos especialistas humanos sobre o processo que classica os exemplos no mundo real tentando manter um bom desempenho. Os resultados iniciais obtidos com o algoritmo aqui proposto são pro-missores, uma vez que ela apresenta, em alguns casos, desempenho melhor do que outro algoritmo amplamente utilizado (J48) e um pouco inferior à Random Forest. Além disso, a árvore criada apresenta, no geral, tamanho menor do que a árvore criada pelo algoritmo J48. |