Análise de sinais eletroencefalográficos para a classificação de atividades: uma solução via aprendizado de máquina e imagética motora

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Nóbrega, Taline dos Santos
Orientador(a): Martins, Allan de Medeiros
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/32625
Resumo: As atividades motoras do corpo humano, assim como aquelas relacionadas a tomada de decisões e questões emocionais e psíquicas, podem ser compreendidas por meio da análise dos sinais elétricos provenientes do cérebro, também conhecidos como sinais eletroencefalográficos (EEGs). O estudo e a aplicação desses dados vêm crescendo dentro da comunidade científica. Sabe-se que o emprego de EEG constitui a base do desenvolvimento das Interfaces Cérebro Computador (ICC), e que essas representam o futuro das tecnologias assistivas, especialmente aquelas direcionadas as pessoas que não possuem controle motor. Contudo, a extração de características e padrões desses sinais ainda é um processo complexo. Algoritmos de aprendizagem de máquina vem mostrando excelentes resultados na interpretação de sinais EEG, sendo empregados como ferramenta para classificação e análise. Suas aplicações abrangem desde estudos na área de neurociências, engenharia neural e até mesmo aplicações comerciais. Com isso, a proposta desse trabalho é analisar os sinais advindos da atividade neural de indivíduos submetidos a protocolos que envolvem tarefas do tipo motora e imagética, com objetivo de propor um classificador para tais atividades. Entende-se que tarefas de imagética, especificamente imagética motora, são técnicas neurocognitivas nas quais o sujeito imagina a realização de uma ação motora sem executar o devido movimento, ou seja, trata-se de um processo mental no qual se imagina o movimento do corpo sem executá-lo. A interpretação e classificação desse tipo de sinal permite desenvolver ferramentas de controle que podem ser ativadas por meio de processos cognitivos. Para compor um setup próprio de medição, utilizou-se como instrumentação dois tipos de sensores para coleta dos sinais, um eletroencefalograma de 16 canais e um sensor de baixo-custo, de um eletrodo, com tecnologia de conexão sem fio. A solução proposta para classificação é baseada na técnica de aprendizado de máquina Random Forest. Para ambos sensores, o algoritmo proposto mostrou-se eficiente no processo de identificação do tipo de movimento (real ou imaginético) e do membro que o realizou (mãos ou tornozelos direitos e esquerdos). Adicionalmente, também foi possível validar algumas dificuldades já apontadas por outros pesquisadores da área, como a expressiva variabilidade interpessoal dos sinais EEG, que contribui negativamente no processo de classificação.