A conjectura de Auslander-Reiten para anéis locais Cohen-Macaulay

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Rubio, Victor Daniel Mendoza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Ext
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052022-142851/
Resumo: A conjectura de Auslander-Reiten afirma que dados um anel (comutativo) Noetheriano R e um R-módulo M finitamente gerado, se ExtiR(M,M) = ExtiR(M,R) = 0 para todo i > 0, então M é projetivo. O objetivo deste trabalho é mostrar que esta conjectura é valida para módulos Cohen-Macaulay maximais de posto 1 sobre anéis locais normais Cohen-Macaulay. A demonstração da validade da conjectura nesse caso especial requer de um resultado chave sobre anulamento de módulos Ext sobre anéis locais Cohen-Macaulay. Nesta dissertação, desenvolveremos a teoria necessária para mostrar esse resultado; posteriormente, faremos sua demonstração; e finalizamos mostrando algumas de suas consequências, entre elas a validade da conjectura no caso especial mencionado acima.