Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Helena, Flávio de Falcão e |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3142/tde-10072024-115640/
|
Resumo: |
O objetivo deste trabalho é estudar a precificação de propriedades imobiliárias na cidade de São Paulo com o intuito de encontrar oportunidades sub específicas. A modelagem utilizada considera variáveis intrínsecas (número de quartos, área construída, ano de construção, etc.), assim como variáveis extrínsecas (qualidade do asfalto, transporte público, florestamento, etc.) para estimar o preço de mercado de cada propriedade e, para isso, utiliza dados provenientes de listagens online de apartamentos e bases de dados públicas. Uma modelagem estatística inovadora é proposta para encontrar oportunidades, buscando explorar a robustez de distintos modelos de aprendizagem de máquina (Hedônico, KNN e XGBoost), ao ponderar os resultados segundo os seus respectivos erros percentuais médios. Os resultados indicam ser possível encontrar oportunidades, o que motiva futura pesquisa de aprofundamento na metodologia. |