Análise não linear de sinais de EEG : uma aplicação de redes complexas

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: CHIKUSHI, Rohgi Toshio Meneses lattes
Orientador(a): BARBOSA, Catão Temístocles de Freitas
Banca de defesa: ARAÚJO, Aluizo Fausto Ribeiro, FERREIRA, Tiago Alessandro Espínola
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Programa de Pós-Graduação: Programa de Pós-Graduação em Informática Aplicada
Departamento: Departamento de Estatística e Informática
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6720
Resumo: The electroencephalogram (EEG) is still an important tool in the diagnosis of neurodiseases. As recording technique offers an excellent temporal resolution, instantly capturing brain electrical activity. Recent studies suggest that non-linear dynamic time series as EEG can be transformed into complex networks by the methods of visibility graph and the recurrence network. The builded complex network allows many parameters or network metrics to characterize normal and epleptics. In this work, we transform EEG signals to complex networks and identify the metrics to find statistical diferences between normal and epleptical groups. We show that exist significant statistical differences in the network metrics from the normals and epileptics conditions. We conclude that the transformation of the EEG signal in complex networks provide a helpful tool to diagnostic the brain states.