Reconhecimento de emoções em sinais de EEG via deep learning e reconstrução do espaço de fase.
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/15950 |
Resumo: | Emoções são importantes para os seres humanos, influencia nosso comportamento social, memória e cognição. A área da computação afetiva visa a auxiliar na compreensão dos fenômenos emocionais humanos utilizando sistemas computacionais para isso. Neste contexto, definir, caracterizar e classificar emoções e suas partes constituintes a partir de sinais fisiológicos, como sinais de eletroencefalograma (EEG), expressões faciais, etc., é uma tarefa desafiadora. No entanto, ainda não se conhece um conjunto de características ótimas para o reconhecimento de emoções a partir de sinais de EEG, apesar de existirem características como PSD (power spectral density) e HOC (higher-order crossings), amplamente utilizadas pela comunidade científica. Novas pesquisas têm conseguido avançar substancialmente o estado da arte no que diz respeito ao reconhecimento de emoções a partir de EEG ao considerarem o emprego de características extraídas do espaço de fase desses sinais e classificadores baseados em técnicas de deep learning. Neste contexto, a presente tese investigou o emprego de imagens de reconstrução do espaço de fase de sinais de EEG, que são submetidas à uma rede convolucional 3D (uma das técnicas de deep learning), para aprender automaticamente características do espaço de fase de sinais de EEG para reconhecer diferentes estados emocionais de modo independente do indivíduo. Os resultados dos experimentos demonstraram a viabilidade e competitividade da abordagem proposta utilizando imagens de reconstrução do espaço de fase empilhadas de, apenas um canal de EEG FP1, alcançando acurácias de 0, 84 ± 0, 07, para quatro classes de valência-excitação, e 0, 88 ± 0, 05 para duas classes de valência e 0, 94 ± 0, 01 para duas classes de excitação, ambos utilizando a metodologia de treinamento e classificação do tipo LOSO (leave-one-subject-out). Esses resultados, além de reduzir a quantidade de canais necessários para a classificação ao mínimo possível, contribui para avançar o estado da arte ao apresentar uma nova abordagem para a classificação de emoções a partir de sinais de EEG. |