Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
OLIVEIRA, Gustavo Henrique Batista Santos
 |
Orientador(a): |
COUTINHO, Luciano Reis
 |
Banca de defesa: |
COUTINHO, Luciano Reis
,
BRAZ JÚNIOR, Geraldo
,
TEIXEIRA, Silmar Silva |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Maranhão
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
|
Departamento: |
DEPARTAMENTO DE INFORMÁTICA/CCET
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tedebc.ufma.br/jspui/handle/tede/2738
|
Resumo: |
In this work it is proposed a novel method for automatic k-complex (KC) detection in human sleep EEG, named MT-KCD. Like most methods, MT-KCD codifies some rules used by human experts such as KC characterization as 0-4 Hz waveform standing out from the background, with peak-to-peak amplitude ≥ 75 𝜇𝑉 and duration ≤ 2 seconds. The MT-KCD novelty when compared to existing methods is the usage of multitaper spectral analysis to characterize the KC as 0-4 Hz waveform standing out from the background. The EEG multitaper spectral analysis is a recntly proposed tecnique by researches as a complement to the traditional hypnogram to sleep staging. The MT-KCD consists in three phases: pre-processing, candidates extraction and candidates elimination. In pre-processing phase, EEG multitaper spectrogram is computed. In sequence, the multitaper spectrogram is used to identify regions where possible have KCs occurrences. Lastly, candidates waveform which satisfy duration and peak-to-peak amplitude criterias are marked as KC. MT-KCD was evaluated using a public KC database known as DREAMS. Results have shown that MT-KCD improves detection metrics, especially F1 and F2 scores (harmonic averages of recall and precision), when compared to existing methods. F1 and F2 scores of MT-KCD on DREAMS were greater than 75%, in most of the evaluation scenarios, outperforming other methods. In regards to recall and precision, MT-KCD is comparable to existing methods in recall and precision, but presenting a more balanced relation between these metrics (F1 and F2 scores). |