Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
AMARAL, Daniel Oliveira Jordão do
 |
Orientador(a): |
RESENDE, Luciane Vilela |
Banca de defesa: |
CARVALHO, Reginaldo de,
NASCIMENTO, Ana Verônica Silva do,
MARTINS, Luiza Suely Semen |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal Rural de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Melhoramento Genético de Plantas
|
Departamento: |
Departamento de Agronomia
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/6224
|
Resumo: |
To identify tomato plant (Lycopersicon esculentum Mill), cv. BRH, genes which answer to plant pathogen Fusarium oxysporum f. sp. lycopersici and salicylic acid, the carrier molecule for activation of responses of plant defense, it was used the suppression subtractive hybridization (SSH) technique, from leaf cDNAs, 24h after salicylic acid, library denominated AS, and root cDNA, 72h after inoculation with F. oxysporum f. sp. lycopersici, incompatible interaction, library denominated FO. This work represents the first report of global gene expression of tomato plant induced by salicylic acid and F. oxysporum f. sp. lycopersici, using SSH technique; it was identified a total of 307 clones in the two subtractive libraries, being 143 obtained in the AS library and 164 in the FO library. Probable functions for genes were obtained by sequencing of clones and subsequent homology research at datas. These isolated genes are involved in several processes related to resistance against plant pathogen such as: hypersensitive response, programmed cell death, synthesis and transport of antimicrobial metabolites, signal perception and transduction, synthesis of pathogenesis-related proteins, lipid metabolism and selective degradation of proteins. It was identified in FO library a higher number of defense-related genes (26%) than in AS library (24%). In relation to the number of genes encoding antimicrobial proteins, they were only found in FO library (7%). However, genes involved in secondary compound metabolism were higher in AS library (13%) in relation to FO library (4%). These genes related to controlled degradation of proteins were also higher in AS library (3%) than in FO library (1%). The results suggest that the resistance of tomato plant induced by salicylic acid and by plant pathogen occur by distinct mechanisms. |