Módulos injetivos e a dualidade de Matlis

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Bustos Ríos, Daniel Francisco
Orientador(a): Sant'Ana, Alveri Alves
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/127991
Resumo: O objetivo desta dissertação é estudar a caracterização dos módulos injetivos sobre anéis noetherianos e comutativos, dada por Eben Matlis em [16], como soma direta de módulos da forma E(A P ). Assim, discutimos algumas propriedades dos mó- dulos injetivos indecomponíveis sobre esses tipos de anéis. Em particular, mostramos que o completamento do anel local Ap é isomorfo ao anel HomA(E(A P );E(A P )). A partir disso, mostramos que, quando o anel for comutativo, noetheriano, local e completo, então a categoria dos módulos noetherianos e a categoria dual dos módulos artinianos são equivalentes.