Solubilidade de equações polinomiais por radicais reais e cálculo do grupo de galois em Q[X]

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Azevedo, Danielle Santos
Orientador(a): Ripoll, Cydara Cavedon
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/65427
Resumo: Neste trabalho apresentamos um teorema que explicita condições necessárias e suficientes para que um polinômio f(X) 2 Q[X] seja solúvel por radicais reais, juntamente com algumas aplicações do mesmo. Além disso, mostramos que em Q[X] sempre e possível encontrar o grupo de Galois de qualquer polinômio f(X) 2 Q[X].