Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Pellejero, Alan Uchoa |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55136/tde-04062024-114905/
|
Resumo: |
A Teoria de Galois é considerada um dos principais resultados de Álgebra do século XIX. Sua importância não se resume à beleza da solução encontrada para o problema de resolução de equações algébricas por radicais reais, mas também por introduzir conceitos inovadores que deram origem ao que se conhece hoje por Álgebra Moderna. A partir de uma contextualização histórica que busca situar o desenvolvimento da matemática em cada época, são apresentados conceitos relacionados à evolução do pensamento matemático e alguns de seus principais resultados. No estudo das equações do primeiro ao quarto grau, são apresentadas as respectivas deduções de suas fórmulas resolutivas. Para equações com grau igual ou superior a cinco, são apresentados conceitos como Grupos, Anéis e Corpos, assim como alguns de seus principais resultados, com o objetivo de provar a insolubilidade de uma equação polinomial de grau n ≥ 5 por meio de uma abordagem alternativa — na qual não se utilizam conceitos como extensões normais, polinômios irredutíveis ou corpos de decomposição. Como exemplos de aplicação da teoria, são apresentados ao final três problemas clássicos da Geometria — duplicação do cubo, trisseção de um ãngulo e quadratura do círculo — , cuja impossibilidade de resolução com régua e compasso somente foi demonstrada a partir da Teoria de Galois. |