Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Ongaratto, Artur Matia |
Orientador(a): |
Horta, Eduardo de Oliveira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/237727
|
Resumo: |
Recentemente, Ota, Kato e Hara (2019) propuseram estimar a moda condicional de uma resposta, dado um vetor de covariáveis, por um estimador escalonável computacionalmente derivado do modelo de regressão quantílica linear proposto por Koenker e Bassett (1978). Alternativamente, propomos estimar a moda condicional maximizando o estimador de densidade condicional de Fernandes, Guerre e Horta (2021). Esta aborgadem tem pelo menos dois benefícios: eficiência computacional e bom comportamento assintótico, que, em particular, “contornam” a maldição da dimensionalidade. |