[pt] ANÁLISE EMPÍRICA DOS MODELOS DE AUTO-REGRESSÃO QUANTÍLICA
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10539&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10539&idi=2 http://doi.org/10.17771/PUCRio.acad.10539 |
Resumo: | [pt] Modelos auto-regressivos (AR(p)) de séries temporais supõem que a dinâmica da série contém uma dependência linear nas observações passadas até uma defasagem p, e um erro aleatório independente e identicamente distribuído (i.i.d). Modelos de auto-regressão quantílica (QAR(p)) são uma generalização dos AR(p) em que os coeficientes auto- regressivos variam com o quantil da distribuição condicional, não sendo necessária, portanto, uma componente explícita de erro aleatório. Esta dissertação estuda a inferência estatística proposta para modelos QAR(p) por Koenker e Xiao (2004), com o auxílio de simulações de Monte Carlo. Enquanto a estimação mostra-se bem precisa, os resultados do teste de hipóteses, onde a hipótese nula supõe um modelo auto-regressivo (AR), não apresentam bons resultados, variando estes com o modelo gerador de dados. |