Global variable selection for quantile regression

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Bellini, Tais Loureiro
Orientador(a): Horta, Eduardo de Oliveira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/241720
Resumo: A regressão quantílica fornece um modelo parcimonioso para a função quantílica condicional da variável resposta Y dado o vetor de covariáveis X, e descreve toda a distribuição condicional da resposta, produzindo estimadores mais robustos à presença de valores discrepantes. Os modelos de regressão quantílica especificam, para cada nível quantílico τ, a forma funcional para o τ -ésimo quantil condicional da resposta, o que traz complexidade para realizar a seleção de variáveis utilizando técnicas de regularização, como LASSO ou adaptive LASSO (adaLASSO), pois podemos obter um conjunto diferente de variáveis selecionadas para cada nível quantílico. Neste trabalho, propomos um método global para seleção de variáveis e estimação de coeficientes na estrutura de regressão quantílica linear, impondo poucas restrições à forma funcional de β(•), e aplicando penalização group adaLASSO para seleção de variáveis. Montamos um estudo de Monte Carlo comparando seis diferentes estimadores propostos baseados em LASSO, adaLASSO e group LASSO em seis cenários que variam o tamanho da amostra e o número de níveis quantílicos estimados. Os resultados demonstram que a seleção do parâmetro de ajuste λ para penalização é fundamental para a seleção das variáveis e estimativa do coeficiente. Observou-se que os métodos que utilizam LASSO tradicional são mais propensos a incluir o modelo verdadeiro em relação ao adaLASSO, mas renunciando à redução do modelo e não removendo covariáveis irrelevantes, enquanto as abordagens agrupadas são mais eficazes em zerar coeficientes menos relevantes.