Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Bellini, Tais Loureiro |
Orientador(a): |
Horta, Eduardo de Oliveira |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/10183/241720
|
Resumo: |
A regressão quantílica fornece um modelo parcimonioso para a função quantílica condicional da variável resposta Y dado o vetor de covariáveis X, e descreve toda a distribuição condicional da resposta, produzindo estimadores mais robustos à presença de valores discrepantes. Os modelos de regressão quantílica especificam, para cada nível quantílico τ, a forma funcional para o τ -ésimo quantil condicional da resposta, o que traz complexidade para realizar a seleção de variáveis utilizando técnicas de regularização, como LASSO ou adaptive LASSO (adaLASSO), pois podemos obter um conjunto diferente de variáveis selecionadas para cada nível quantílico. Neste trabalho, propomos um método global para seleção de variáveis e estimação de coeficientes na estrutura de regressão quantílica linear, impondo poucas restrições à forma funcional de β(•), e aplicando penalização group adaLASSO para seleção de variáveis. Montamos um estudo de Monte Carlo comparando seis diferentes estimadores propostos baseados em LASSO, adaLASSO e group LASSO em seis cenários que variam o tamanho da amostra e o número de níveis quantílicos estimados. Os resultados demonstram que a seleção do parâmetro de ajuste λ para penalização é fundamental para a seleção das variáveis e estimativa do coeficiente. Observou-se que os métodos que utilizam LASSO tradicional são mais propensos a incluir o modelo verdadeiro em relação ao adaLASSO, mas renunciando à redução do modelo e não removendo covariáveis irrelevantes, enquanto as abordagens agrupadas são mais eficazes em zerar coeficientes menos relevantes. |