Inferência preditiva geoespacial da criminalidade em Porto Alegre : uma abordagem de aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Joner, Henrique
Orientador(a): Santos, Nelson Seixas dos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/217875
Resumo: Novas estratégias para o enfrentamento da criminalidade no Brasil são necessárias, haja vista o recorde dos índices de crimes violentos registrados nos últimos anos. Dessa forma, o objetivo desta pesquisa é demonstrar o potencial da utilização da inteligência artificial como ferramenta no combate à criminalidade. Foram testados quatro tipos diferentes de modelos na predição de eventos criminosos e do nível de criminalidade em cada localidade, sendo eles: regressão, classificação, redes neurais profundas e long short-term memory. O estudo analisou 351.980 crimes violentos ocorridos na cidade de Porto Alegre/RS entre janeiro de 2005 e outubro de 2019. O desempenho de cada algoritmo construído foi testado prevendo os eventos criminosos diários em diferentes números de clusters no qual a cidade foi subdividida. Os resultados apontam que todos os modelos utilizados tem capacidade significativa na predição de crimes, com destaque para o modelo de classificação construído, que ao utilizar 6 clusters de criminalidade obteve um erro médio absoluto (MAE) de 0.43 e a raiz quadrada do erro médio quadrático (RMSE) de 1.68, para a previsão de crimes diários em cada cluster, obtendo um coeficiente de determinação de 0.94. Quando o objetivo era prever o nível de criminalidade em cada cluster, o mesmo modelo de classificação obteve um R2 de 0.98, MAE de 0.01 e RMSE de 0.07.