Predspot: predicting crime hotspots with machine learning

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Araújo Júnior, Adelson Dias de
Orientador(a): Cacho, Nélio Alessandro Azevedo
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/29155
Resumo: Smart cities are increasingly adopting data infrastructure and analysis to improve the decision-making process for public safety issues. Although traditional hotspot policing methods have shown benefits in reducing crime, previous studies suggest that the adoption of predictive techniques can produce more accurate estimates for future crime concentration. In previous work, we proposed a framework to generate near-future hotspots using spatiotemporal features. In this work, we redesign the framework to support (i) the widely used crime mapping method kernel density estimation (KDE); (ii) geographic feature extraction with data from OpenStreetMap; (iii) feature selection, and; (iv) gradient boosting regression. Furthermore, we have provided an open-source implementation of the framework to support efficient hotspot prediction for police departments that cannot afford proprietary solutions. To evaluate the framework, we consider data from two cities, namely Natal (Brazil) and Boston (US), comprising twelve crime scenarios. We take as baseline the common police prediction methodology also employed in Natal. Results indicate that our predictive approach estimates hotspots 1.6-3.1 times better than the baseline, depending on the crime mapping method and machine learning algorithm used. From a feature importance analysis, we found that features from trend and seasonality were the most essential components to achieve better predictions.