Proposta de modelo conceitual de algoritmo multimodal para aplicação de inteligência artificial no rastreamento de sinais neuroradiológicos cerebrais de lipofuscinose ceroide neuronal tipo 2 em imagens de ressonância magnética

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Santos, Debora Mesojedovas
Orientador(a): Matte, Ursula da Silveira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/265115
Resumo: A lipofuscinose neuronal ceroide tipo 2 (CLN2) é uma doença neuropediátrica rara, de rápida evolução e que, se não tratada precocemente, leva ao estado vegetativo crônico persistente aos 8-10 anos de idade. Logo, seu diagnóstico precoce é fundamental para um melhor prognóstico do paciente. A suspeita clínica da CLN2 pode ser inicialmente investigada por uma série de exames, incluindo a ressonância magnética nuclear (RMN) cerebral, que pode ter seu tempo de análise otimizado por meio da inteligência artificial (IA). Para tanto, foi realizada uma revisão sistemática da literatura com meta-análise para conhecer e pontuar matematicamente os sinais clínicos e neuroradiológicos mais frequentes na CLN2 e, com isso, construir um modelo conceitual de algoritmo multimodal que usará IA no rastreamento de sinais neuroradiológicos cerebrais da doença em imagens de RMN. 68 estudos únicos incluídos na revisão sistemática reportaram desfechos de 1.071 pacientes. Destes estudos, 33 foram meta-analisados (n=930 pacientes). Os achados neuroradiológicos mais frequentes foram: diminuição hipocampal (fenótipo típico), com proporção agrupada de 84% (Intervalo de confiança, IC, 95% 0.70-0.92; I2=76%, p<0.01; 19 estudos; n= 355), atrofia cerebelar, com proporção agrupada de 84% (IC 95% 0.70-0.92; I2=76%, p<0.01; 19 estudos; n= 355) e atrofia cortical, com proporção agrupada de 77% (IC 95% 0.58-0.89; I2=78%, p<0.01; 21 estudos; n=407). Os desfechos clínicos mais frequentes foram: epilepsia/convulsão, com proporção agrupada de 80% (IC 95% 0.70-0.88; I2=81%, p<0.01; 29 estudos; n=828), mioclonia, com proporção agrupada de 70% (IC 95% 0.40-0.89; I2=80%, p<0.01; n=160) e ataxia, com proporção agrupada de 59% (IC 95% 0.37-0.78; I2=79%, p<0.01; 14 estudos; n=264). O algoritmo multimodal foi conceituado e poderá ser testado com mínimo de 30 imagens. Também foi elaborado um plano de aplicabilidade que propõe a aplicação do modelo conceitual no sistema público de saúde no Brasil, visando o encurtamento da jornada diagnóstica do paciente com CLN2.