Aplicação de aprendizado de máquina na detecção de fraudes públicas

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lopes, Marco Antonio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/12/12139/tde-10022020-174317/
Resumo: Nos últimos anos, os governos mundiais vêm participando de esforços conjuntos para aumentar a disponibilidade dos dados governamentais para seus cidadãos, e o resultado disso, no Brasil, foi a criação do Portal Brasileiro de Dados Abertos. Com mais dados disponíveis ao cidadão comum, várias análises que não são feitas pelo governo, em razão da falta de conhecimento ou de interesse, tornam-se possíveis, como, por exemplo, a identificação de fraudes em licitações públicas. Uma forma de identificar os padrões existentes nessas fraudes é o uso de aprendizado de máquina. Atualmente, existem softwares como R e Python que permitem o uso de diversas técnicas de aprendizado de máquina já implementadas. Esses softwares, devido à sua grande capacidade de processamento, também, podem auxiliar em problemas com dados desbalanceados, em que a ocorrência do evento que está sendo estudado é muito rara, como é o caso de fraudes. Assim, um exemplo desse tipo de problema e que é alvo do estudo desta dissertação é a detecção de fraudes em sistemas públicos por meio da descoberta de contratos que pertencem a empresas inidôneas. Tal desafio pode potencializar-se com grandes volumes de dados, visto que podem tornar o processamento dessas bases mais complexo. Assim, esta dissertação visa contribuir para a resolução desse problema propondo avaliar metodologias e técnicas de aprendizado de máquina que apresentam resultados satisfatórios nesse cenário.