Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Braga, Rodrigo Orsini |
Orientador(a): |
Trevisan, Vilmar |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10183/132255
|
Resumo: |
Neste trabalho, apresentamos um algoritmo que determina o número de autovalores de uma matriz simétrica qualquer que representa uma árvore, num dado intervalo real. Várias aplicações são obtidas em relação à distribuição dos autovalores da matriz laplaciana perturbada, uma matriz de representação de grafos que inclui, como casos particulares, a matriz de adjacências, a matriz laplaciana combinatória, a matriz laplaciana sem sinal e a matriz laplaciana normalizada, amplamente estudadas em Teoria Espectral de Grafos. Além disso, desenvolvemos também um algoritmo de localização de autovalores da matriz de adjacências de um grafo unicíclico. Este procedimento permite obter propriedades espectrais de grafos unicíclicos denominados centopeias unicíclicas. |