Ciclos limite e suas configurações em Campos de Vetores Polinomiais Planares

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Rodero, Ana Livia [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/148963
Resumo: Estudamos dois critérios sobre a não existência ou existência e unicidade de ciclos limites para campos vetoriais planares. Aplicamos esses critérios em algumas famílias de campos vetoriais quadráticos e cúbicos, além de estudarmos uma fórmula explícita para o número de ciclos limites que bifurcam do centro linear x’=-y, y’=x, quando o perturbamos com um campo vetorial polinomial arbitrário de grau n tendo a origem como um ponto singular. Usando o segundo critério, exibimos a configuração dos ciclos limites que bifurcam deste centro. Por fim, apresentamos uma segunda aplicação do segundo critério, onde mostramos que toda configuração finita de curvas fechadas simples do plano é topologicamente realizável como um conjunto de ciclos limites de um campo vetorial polinomial planar.