Órbitas periódicas em sistemas diferenciais suaves por partes

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Carnevarollo Júnior, Rubens Pazim [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/143836
Resumo: Este trabalho está relacionado ao estudo de bifurcações e órbitas periódicas de sistemas diferenciais suaves por partes planares em duas e três zonas. Em sistemas com duas zonas, estamos interessados em encontrar uma fronteira de separação para um dado par de sistemas suaves de tal modo que o sistema descontínuo, formado pelo par de sistemas suaves, tem um contínuo de órbitas periódicas. Neste caso, denominamos a fronteira de separação como Fronteira de Centros. Para os sistemas com três zonas, consideramos sistemas lineares por partes contínuo, em que a zona central é degenerada e na qual o determinante da parte linear é nulo. Ao mover um parâmetro específico, detectamos algumas bifurcações até então desconhecidas, exibindo transição de salto nos pontos de equilíbrios e o aparecimento de ciclos limites. Em particular, introduzimos a bifurcação Bainha de Espada, caracterizada pelo nascimento de um ciclo limite de um contínuo de pontos de equilíbrios.