Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Ribeiro, Jarne Donizetti |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/183052
|
Resumo: |
Este trabalho dedica-se á classificação de centros sobre variedades centrais de sistemas diferenciais polinomiais em R^3 e a bifurcação de ciclos limites a partir destes centros. Restringimos nosso estudo a certas famílias de centros rígidos em R^3, cuja definição introduzimos e foi motivada pela definição dos centros rígidos no plano. No caso planar este tipo de centro é muito estudado e vários resultados interessantes foram obtidos. Apresentamos formas normais que caracterizam os centros rígidos e resolvemos o problema do centro–foco para várias famílias de centros rígidos em R^3. Também obtemos cotas inferiores para o número de ciclos limites que bifurcam a partir dos centros rígidos que foram classificados. |