Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Arakaki, Lucas Queiroz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/183069
|
Resumo: |
Neste trabalho, estudamos o Problema do Centro-Foco para sistemas planares e sua extensão para sistemas tridimensionais apresentando alguns dos resultados mais recentes da literatura. Nosso enfoque envolve duas abordagens principais: o estudo da aplicação de Poincaré e o Segundo Método de Lyapunov. Destes métodos, surgem dois conjuntos de expressões algébricas denominadas coeficientes de Lyapunov e coeficientes focais. Mostramos a equivalência existente entre estes coeficientes e sua relação com outro importante problema da Teoria Qualitativa das E.D.O.: a bifurcação de ciclos limite a partir de um ponto de Hopf. Além disso, apresentamos o Método da Paralelização, utilizado para obter os coeficientes focais de modo eficiente, e ao final do texto, discutimos alguns exemplos que ilustram os resultados. |