Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Freitas, Luciana Paro Scarin [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/143894
|
Resumo: |
O dióxido de carbono (CO2) é considerado um dos principais gases do efeito estufa adicional e contribui significativamente para as mudanças climáticas globais. Áreas agrícolas oferecem uma oportunidade para mitigar esse efeito, uma vez que, dependendo de seu uso e manejo, são capazes de armazenar grandes quantidades de carbono, retirando-as da atmosfera. A produção de CO2 no solo é resultado de processos biológicos, como a decomposição da matéria orgânica e respiração de raízes e organismos do solo, fenômeno chamado de emissão de CO2 do solo (FCO2). O objetivo deste trabalho foi utilizar as redes neurais artificiais para estudo e previsão de padrões espaço-temporais da emissão de CO2 do solo em áreas de cana-de-açúcar em sistema de cana crua, colheita mecanizada, quando grandes quantidades de palhas são depositadas sobre a superfície do solo. Valores de FCO2 foram coletados em áreas de cultivo comercial no Sudeste do Estado de São Paulo, registrados por meio do sistema LI-8100, em gradeados amostrais para determinação da variabilidade espaçotemporal de FCO2, e atributos físicos e químicos do solo. Foram utilizados dados referentes a estudos realizados nos anos de 2008, 2010 e 2012, no período após a operação de colheita mecânica da cultura. Uma rede neural Perceptron Multi-Camadas via algoritmo backpropagation foi aplicada para estimar a emissão de FCO2 do ano de 2012, utilizando os dados referentes aos anos de 2008 e 2010 para treinamento da rede neural. A rede neural inicialmente apresentou um MAPE de 18,3852 coeficiente de determinação R2 de 0,9188. Os dados obtidos do FCO2 observado e do FCO2 estimado apresentam moderada dependência espacial, e pelos mapas do padrão espacial do fluxo de CO2 é observado que a rede neural apresentou considerável similaridade com os dados observados, identificando os pontos característicos de maior emissão como também os de menor emissão de CO2. Portanto, os resultados indicam que a rede neural artificial pode fornecer estimativas com confiabilidade para a avaliação de FCO2 a partir de dados de atributos físicos e químicos do solo, sendo capaz de caracterizar a variabilidade espaçotemporal desse atributo em áreas de cana-de-açúcar, sob o sistema de cana crua no Sudeste do Estado de São Paulo. |