Aplicação de Redes Neurais Artificiais na Previsão de Demanda de Peças de Reposição de Veículos Automotores.
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Pontifícia Universidade Católica de Goiás
Engenharia BR PUC Goiás Programa de Pós-Graduação STRICTO SENSU em Engenharia de Produção e Sistemas |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://localhost:8080/tede/handle/tede/2484 |
Resumo: | As constantes mudanças no cenário nacional de venda de automóveis trouxeram um fator a mais na busca do gerenciamento dos estoques de peças de reposição: a necessidade de diminuir o valor investido em estoques e evitar a obsolescência. Com esse propósito, este trabalho tem por objetivo avaliar o desempenho de Redes Neurais Artificiais na predição de demanda de peças de reposição de veículos automotores identificando, dentre as redes estudadas, quais se adaptam melhor a cada modelo de evolução de consumo e como se aplica em cada caso. Outrossim, propõe a utilização de um método de avaliação e monitoramento dos modelos selecionados através da análise dos erros médios quadráticos da previsão. A determinação de métodos preditivos com maior grau de precisão, constituise em etapa fundamental do processo de gerenciamento de estoques. Se a previsão apresentar uma baixa acurácia, pode-se gerar excesso ou falta de estoques e esse excesso, se não tratado adequadamente, pode culminar em obsolescência e gerar custos desnecessários. Para alcançar o objetivo proposto, buscou-se, em primeiro lugar, o estudo dos principais aspectos teóricos relacionados ao processo de gestão de estoques e aos métodos de previsão de demanda. Posteriormente, segue o processo de seleção de duas redes neurais artificiais, Rede de Elman e Rede TDNN. Para certificar a acurácia das demandas, foram utilizados quatro itens que se diferem pelo tipo de gráfico de evolução de consumo, buscando itens com consumo constante, crescente, decrescente e itens com quantidades menores de períodos observados. Os resultados obtidos, mediante a utilização da metodologia proposta, mostraram que as Redes Neurais possuem as características necessárias para sua aplicação com um grau de acurácia mais elevado. |