Previsão de carga multinodal usando a rede neural ART-ARTMAP fuzzy

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Antunes, Juliana Fonseca [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/100355
Resumo: Previsão de cargas é uma atividade indispensável para o funcionamento dos sistemas de energia elétrica e contribuem para o planejamento e a operação, visando garantir o fornecimento de energia aos consumidores de forma segura, confiável e econômica. A previsão a curto prazo ajuda a estimar o fluxo de carga, tomar decisões de prevenção de sobrecargas, entre outras ações que são rotineiramente executadas. Para realizar a previsão é necessário identificar os padrões do comportamento de consumo e da sua relação com as variáveis externas do ambiente no sistema. A maioria dos estudos de previsões de cargas é realizada utilizando métodos estatísticos, onde é necessário modelar a carga matematicamente. Apesar de fornecerem bons resultados utilizam métodos complexos é de difícil modelagem. As técnicas de inteligência artificial proporcionam uma nova ferramenta, capazes de modelar uma grande quantidade de dados de cargas e construir a relação entre as variáveis do sistema de forma automática. Dentre essas técnicas inteligentes destacam-se as redes neurais e a lógica fuzzy que são utilizadas para previsão de cargas. Nesta pesquisa, apresenta-se um método de previsão multinodal (em vários pontos de interesse da rede elétrica) de carga elétrica, de curto prazo, utilizando uma rede neural artificial baseada na arquitetura ART (Adaptive Resonance Theory), denominada de rede neural ART-ARTMAP Fuzzy. As redes neurais ART apresentam características fundamentais, a estabilidade e a plasticidade, para treinar e prever de forma rápida e confiável. O método proposto foi implementado na plataforma MATLAB, onde foi possível realizar a previsão de cargas, por exemplo, de um sistema composto por nove subestações. Como forma de avaliar os resultados obtidos pela previsão, foi calculada...