Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Altran, Alessandra Bonato [UNESP] |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://hdl.handle.net/11449/100304
|
Resumo: |
A previsão de carga, em sistemas de energia elétrica, constitui-se numa atividade de grande importância, tendo em vista que a maioria dos estudos realizados (fluxo de potência, despacho econômico, planejamento da expansão, compra e venda de energia, etc.) somente poderá ser efetivada se houver a disponibilidade de uma boa estimativa da carga a ser atendida. Deste modo, visando contribuir para que o planejamento e operação dos sistemas de energia elétrica ocorram de forma segura, confiável e econômica, foi desenvolvida uma metodologia para previsão de carga, a previsão multinodal, que pode ser entendida como um sistema inteligente que considera vários pontos da rede elétrica durante a realização da previsão. O sistema desenvolvido conta com o uso de uma rede neural artificial composta por vários módulos, sendo esta do tipo perceptron multicamadas, cujo treinamento é baseado no algoritmo retropropagação. Porém, foi realizada uma modificação na função de ativação da rede, em substituição à função usual, a função sigmoide, foram utilizadas as funções de base radial. Tal metodologia foi aplicada ao problema de previsão de cargas elétricas a curto-prazo (24 horas à frente) |