Previsão de cargas elétricas através de uma Rede Neural Híbrida Back-ART Fuzzy

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Oliveira, Cícero Marcelo de [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/87152
Resumo: Nos dias atuais, a previsão de cargas elétricas tem se mostrado cada vez mais importante às empresas distribuidoras de tal serviço, especialmente para que sejam possibilitados o planejamento, análise e operação dos sistemas elétricos, restando clara a necessidade de se antever o comportamento da carga, tornando possível o fornecimento eficiente de energia aos consumidores, visando que isso ocorra de forma econômica e contínua, valendo ressaltar ainda que, a tais empresas resta o interesse na lucratividade do setor para que se mantenham sólidas no mercado. Em um primeiro momento, a solução para tais problemas foi a utilização de técnicas matemáticas e estatísticas, podendo citar como exemplo, as séries numéricas, com resultados satisfatórios, mas de difícil modelagem. A inteligência artificial tem se mostrado uma técnica que supera os resultados anteriormente obtidos e, como prova de tal afirmação, a presente dissertação apresenta uma metodologia baseada em redes neurais, possibilitando a obtenção de resultados bastante satisfatórios, demonstrando ser um modelo robusto, com baixo custo computacional, rápido e eficiente. O objetivo deste trabalho é a utilização do hibridismo de redes neurais, sendo a primeira delas, uma rede ART Fuzzy e a segunda, a Perceptron multicamadas, via algoritmo backpropagation, aproveitando as melhores características de cada uma delas para a obtenção de resultado viável quando de sua utilização. A metodologia utilizada apresenta níveis de erro aceitáveis comparado a outros métodos que se encontram na literatura ou, até mesmo, em uso pelas empresas distribuidoras do setor elétrico brasileiro. No intuito de se obter a previsão de cargas citada acima, foi utilizado um banco de dados histórico de uma empresa distribuidora nacional, valendo-se de técnicas como o janelamento, entre outras que serão devidamente descritas no decorrer do texto