Automorfismos de Grupos Abelianos Finitos
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Viçosa
BR Álgebra; Análise; Geometria e Topologia; Matemática Aplicada Mestrado em Matemática UFV |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://locus.ufv.br/handle/123456789/4930 |
Resumo: | O conjunto de todos os automorfismos de um grupo G forma um grupo denotado por Aut(G). Neste trabalho estudamos automorfismos de grupos abelianos finitos, seguindo principalmente a abordagem feita por Christopher J. Hillar e Darren L. Rhea no artigo Automorphisms of finite abelian Groups (American Mathematical Monthly 114 n. 10 (2007) 917-923). O objetivo principal ́e fazer uma caracterização do grupo de automorfismos Aut(G), onde G ́e um grupo abeliano finito e apresentar uma fórmula para o número de elementos de Aut(G). A determinação desta f ́ormula ́e feita de duas maneiras distintas: uma a partir do cálculo do número de elementos do grupo Aut(G) visto como grupo das unidades do anel de endomorfismos End(G) e a outra utilizando certos subgrupos característicos do grupo G. Esse último método segue o desenvolvimento feito por Heinrich Kuhn, em sua tese de doutorado. |