Um estudo sobre automorfismos potências com centralizadores 2-grupos abelianos elementares

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Souza, Gabriella Cristina de lattes
Orientador(a): Silva, Jhone Caldeira lattes
Banca de defesa: Silva, Jhone Caldeira, Lima, Igor dos Santos, Oliveira, Ricardo Nunes de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/12336
Resumo: Let $\varphi$ be an automorphism of a group $G$. We denote by $C_G(\varphi)$ the centralizer of $\varphi$ in $G$, that is, the subgroup of the fixed points of $\varphi$ to $G$. It is known that various properties of $G$ are in a certain sense close to the corresponding properties of the subgroup $C_{G}(\varphi)$. In the case where $\varphi$ is a power automorphism, we have that all elements having order 2 are fixed by $\varphi$. For this reason, we consider the case where $C_{G}(\varphi)$ is an elementary abelian $2$-group. A power automorphism $\varphi$ is said to be a pre-fixed-point-free power automorphism if $C_{G}(\varphi)$ is an elementary abelian $2$-group. When a group $G$ admits a pre-fixed-point-free power automorphism, we say that $G$ is an $E$-group. In this work, we determine all $E$-groups and their pre-fixed-point-free by power automorphisms. In particular, we use some results on power automorphisms to show a characterization of finite abelian groups.