Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Souza, Gabriella Cristina de
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Silva, Jhone Caldeira
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Silva, Jhone Caldeira,
Lima, Igor dos Santos,
Oliveira, Ricardo Nunes de |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Matemática (IME)
|
Departamento: |
Instituto de Matemática e Estatística - IME (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/12336
|
Resumo: |
Let $\varphi$ be an automorphism of a group $G$. We denote by $C_G(\varphi)$ the centralizer of $\varphi$ in $G$, that is, the subgroup of the fixed points of $\varphi$ to $G$. It is known that various properties of $G$ are in a certain sense close to the corresponding properties of the subgroup $C_{G}(\varphi)$. In the case where $\varphi$ is a power automorphism, we have that all elements having order 2 are fixed by $\varphi$. For this reason, we consider the case where $C_{G}(\varphi)$ is an elementary abelian $2$-group. A power automorphism $\varphi$ is said to be a pre-fixed-point-free power automorphism if $C_{G}(\varphi)$ is an elementary abelian $2$-group. When a group $G$ admits a pre-fixed-point-free power automorphism, we say that $G$ is an $E$-group. In this work, we determine all $E$-groups and their pre-fixed-point-free by power automorphisms. In particular, we use some results on power automorphisms to show a characterization of finite abelian groups. |