Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Jesus, Rafael Oliveira de
 |
Orientador(a): |
Gouveia, Giovana Siracusa |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Sergipe
|
Programa de Pós-Graduação: |
Pós-Graduação em Matemática
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://ri.ufs.br/handle/riufs/5812
|
Resumo: |
This work we will study the existence and uniqueness of the solution to the following nonlinear hyperbolic problem: where is a bounded open set of Rn with boundary - consisted of two parts -0 and -1, with -0 \ -1 = ; > 1 is a real constant and h : -1 R -! R is a continuous function and strongly monotonous in the second variable. The existence of the above problem will be done using the Faedo-Galerkin method with a special basis for V \H2( ), Strauss' approximations of continuous functions and trace theorems for non-smooth functions. The uniqueness will be obtained in the case where h = p, where 2 W1;1(-1), and p : R -! R is a Lipschitzian function and strongly monotonous. |