Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Gorgônio, Arthur Costa |
Orientador(a): |
Canuto, Anne Magaly de Paula |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/46790
|
Resumo: |
Aplicações no domínio de fluxos contínuos de dados (do inglês, Data Streams) recebem um grande volume de dados rapidamente e, existe a necessidade de processá-los sequencialmente. Uma característica destas aplicações é que os dados podem sofrer mudanças durante o processo da utilização do modelo, ademais a quantidade de instâncias cujo rótulo é conhecido pode não ser suficiente para gerar um modelo eficaz. A fim de suprimir a dificuldade da pouca quantidade de instâncias rotulada, pode-se utilizar o aprendizado semissupervisionado. Além disso, o uso de comitês de classificadores pode auxiliar na detecção da mudança de contexto. Assim, neste trabalho, é proposto um framework para realizar a classificação semissupervisionada em tarefas com fluxos contínuos de dados, utilizando uma abordagem baseada em comitês de classificadores. Este framework utiliza o comitê para se auto avaliar e determinar quando treinar um novo classificador durante o processo de classificação. Para avaliar a eficácia da proposta, foram realizados testes empíricos com onze bases de dados utilizando dois diferentes tamanhos de batch, nove abordagens supervisionadas , por meio das métricas acurácia, precision, recall e f-score. Ao avaliar a quantidade de instâncias processadas, as abordagens supervisionadas obtiveram um desempenho praticamente constantes, enquanto que a proposta apresentou uma melhora de 8,28% e 3,81% utilizando 5% e 10% de instâncias rotuladas, respectivamente. Por fim, os resultados desta pesquisa são promissores, o framework proposto obteve resultados semelhantes ou superiores em 118 dos 198 (60%) casos, em termos estatísticos. |