Uso de confiabilidade na rotulação de exemplos em problemas de classificação multirrótulo com aprendizado semissupervisionado

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Rodrigues, Fillipe lattes
Orientador(a): Canuto, Anne lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte
Programa de Pós-Graduação: Outro
PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
Departamento: Parnamirim
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://memoria.ifrn.edu.br/handle/1044/757
Resumo: As técnicas de Aprendizado de Máquina são aplicadas em tarefas de classificação para a aquisição de conhecimento através de um conjunto de dados ou informações. Alguns métodos de aprendizado utilizados pela literatura são baseados em aprendizado semissupervisionado; este é representado por pequeno percentual de exemplos rotulados (aprendizado supervisionado) combinados com uma quantidade de exemplos rotulados e não rotulados (não-supervisionado) durante a fase de treinamento, reduzindo, portanto, a necessidade de uma grande quantidade de dados rotulados quando apenas um pequeno conjunto de exemplos rotulados está disponível para treinamento. O problema da escolha aleatória das instâncias é comum no aprendizado semissupervisionado, pois a maioria dos trabalhos usam a escolha aleatória dessas instâncias o que pode causar um impacto negativo. Por outro lado, grande parte dos métodos de aprendizado de máquina trata de problemas unirrótulo, ou seja, problemas onde exemplos de um determinado conjunto são associados a uma única classe. Entretanto, diante da necessidade existente de classificar dados em uma grande quantidade de domínios, ou em mais de uma classe, essa classificação citada é denominada classificação multirrótulo. Este trabalho apresenta uma análise experimental dos resultados obtidos por meio da utilização do aprendizado semissupervisionado em problemas de classificação multirrótulo usando um parâmetro de confiabilidade como auxílio na classificação dos dados. Dessa maneira, a utilização de técnicas de aprendizado semissupervisionado, bem como de métodos de classificação multirrótulos, foram imprescindíveis na apresentação dos resultados