Classificação semissupervisionada de séries temporais extraídas de imagens de satélite

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Amaral, Bruno Ferraz do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18112016-105621/
Resumo: Nas últimas décadas, com o crescimento acelerado na geração e armazenamento de dados, houve um aumento na necessidade de criação e gerenciamento de grandes bases de dados. Logo, a utilização de técnicas de mineração de dados adequadas para descoberta de padrões e informações úteis em bases de dados é uma tarefa de interesse. Em especial, bases de séries temporais têm sido alvo de pesquisas em áreas como medicina, economia e agrometeorologia. Em mineração de dados, uma das tarefas mais exploradas é a classificação. Entretanto, é comum em bases de séries temporais, a quantidade e complexidade de dados extrapolarem a capacidade humana de análise manual dos dados, o que torna o processo de supervisão dos dados custoso. Como consequência disso, são produzidos poucos dados rotulados, em comparação a um grande volume de dados não rotulados disponíveis. Nesse cenário, uma abordagem adequada para análise desses dados é a classificação semissupervisionada, que considera dados rotulados e não rotulados para o treinamento do classificador. Nesse contexto, este trabalho de mestrado propõe 1) uma metodologia de análise de dados obtidos a partir de séries temporais de imagens de satélite (SITS) usando tarefas de mineração de dados e 2) uma técnica baseada em grafos para classificação semissupervisionada de séries temporais extraídas de imagens de satélite. A metodologia e a técnica de classificação desenvolvidas são aplicadas na análise de séries temporais de índices de vegetação obtidas a partir de SITS, visando a identificação de áreas de plantio de cana-de-açúcar. Os resultados obtidos em análise experimental, realizada com apoio de especialistas no domínio de aplicação, indicam que a metodologia proposta é adequada para auxiliar pesquisas em agricultura. Além disso, os resultados do estudo comparativo mostram que a técnica de classificação semissupervisionada desenvolvida supera métodos de classificação supervisionada consolidados na literatura e métodos correlatos de classificação semissupervisionada.