Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Lima, João Victor Tomaz de |
Orientador(a): |
Lima, Gustavo Zampier dos Santos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
|
Programa de Pós-Graduação: |
PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufrn.br/handle/123456789/47117
|
Resumo: |
De modo geral, os problemas inversos podem ser enfrentados como a tarefa de otimizar um funcional que promove o ajuste entre os dados experimentais e os dados calculados a partir de um modelo físico. Comumente, se emprega a função objetivo conhecida como "função de mínimos quadrados" — que se baseia na estatística Gaussiana — para esta tarefa, todavia esta abordagem apresenta sérias dificuldades em contexto em que os ruídos não obedecem a estatística Gaussiana. O tipo de ruído não Gaussiano que investigamos neste trabalho são os outliers, os quais são caracterizados como medidas discrepantes que contaminam a amostra e dificultam a leitura dos dados experimentais. Nesta dissertação abordamos a generalização do problema inverso por meio da generalização da estatística Gaussiana no contexto das estatísticas de Rényi, Tsallis e de Kaniadakis. Nesse sentido, discutimos a distribuições dos erros no contexto não gaussiano e as funções objetivos generalizadas que derivam destas estatísticas e avaliamos a robustez delas por meio da denominada Função de Influência (gradiente da função objetivo). Exemplificamos a robustez das metodologias generalizadas usando experimentos numéricos. Em particular, usamos a generalização do problema inverso em um problema de inversão sísmica com elevadas contaminações de outliers. Os nossos resultados apontam que o problema inverso generalizado é resistente a outliers. Além disso, identificamos que o melhor desempenho de inversão de dados ocorre quando o índice entrópico de cada estatística generalizada está associado a funções objetivo proporcionais ao inverso da amplitude do erro. Argumentamos que em tal limite as três abordagens são resistentes a outliers e também são equivalentes. Além disso, esta abordagem sugere um menor custo computacional para o processo de inversão devido à redução de simulações numéricas a serem realizadas e à rápida convergência do processo de otimização. |