Plasticidade induzida por treinamento locomotor na medula espinal intacta em ratos: correlatos morfológicos

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Nunes, Ana Carla Lima
Orientador(a): Costa, Miriam Stela Maris de Oliveira
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Programa de Pós-Graduação: Programa de Pós-Graduação em Fisioterapia
Departamento: Movimento e Saúde
País: BR
Palavras-chave em Português:
LTP
Palavras-chave em Inglês:
LTP
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufrn.br/jspui/handle/123456789/16665
Resumo: The locomotion is one of the most important capabilities developed by the animals, whose improvement is dependent on several neural centers, including the spinal cord. This activity promotes a lot of spinal modifications that enable it to adapt and improve their connections. This study aimed to observe the morphological changes occurring in the spinal cord after locomotor training in intact rats. For that we used male Wistar rats, which were submitted to locomotor training in wheel activity in protocols 1, 3 and 7 days (30min/day), and the results were compared to a control group not subjected to exercise. Coronal sections of 40 μm of the lumbosacral spinal cord were subjected to immunohistochemical techniques anti-Egr1, anti-NMDA and anti-SP, to characterize the spinal plasticity related to these substances. Egr1-immunoreactive cells were increased in all laminas, essentially in those more intensely activated by locomotion, laminas IV-X levels L4-S3. All observed sections expressed NMDA-immunoreactivity. Analysis of SP in the spinal dorsal horn resulted no significant variations of this neuropeptide related to locomotion. The results suggest that locomotor training provides synaptic plasticity similar to LTP in all laminas of the lumbosacral spinal cord, in different intensities. However, the SP appears do not participate of this process in the spinal dorsal horn. This work will contribute for consolidating and characterization of synaptic plasticity in the spinal cord