Uma proposta de arquitetura de rede neural convolucional intervalar para o processamento de imagens intervalares

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Steim, Ivana Patrícia Iahnke
Orientador(a): Aguiar, Marilton Sanchotene de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Centro de Desenvolvimento Tecnológico
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/handle/prefix/8518
Resumo: O objetivo geral deste trabalho é a proposta de uma extensão intervalar para redes neurais convolucionais e a análise de sua aplicação em imagens digitais intervalares no contexto de reconhecimento de padrões em imagens, visando alta exatidão e confiabilidade nos resultados. Este trabalho contém uma rede neural convolucional intervalar com propósito de controlar e automatizar a análise do erro numérico, onde as camadas que compõem a rede neural por convolução são representadas por operações equivalentes através de intervalos e tem-se por objetivo analisar se houve melhora na precisão e na classificação. Primeiro, as imagens tradicionais são transformadas em imagens intervalares, considerando a vizinhança de 4 e de 8 de seus pixels; após é observado o processamento pela rede dessas imagens quanto à exatidão e controle de erro; o terceiro passo é inserir o conceito de fatiamento da imagem intervalar à procura de uma melhoria na capacidade de classificação da rede, com isso são observados alguns casos e seu efeito na acurácia da rede; por fim, são introduzidas operações de Validação Cruzada e de Image Augmentation para confirmar overfiting e buscar um melhor desempenho da rede, respectivamente. Observou-se que o recurso de fatiamento, admissível às imagens intervalares, mostrou-se como melhor opção para um melhor desempenho de classificação da rede nas configurações atuais desta.