Interval Analysis and Applications

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Huamán, Gino Gustavo Maqui
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/153720
Resumo: Esta Tese trabalha com alguns conceitos fundamentais da analise intervalar e suas aplicações. Em primeiro lugar, a Tese aborda a álgebra de funções de valor intervalar gH diferenciáveis. Especificamente, damos condições para a gH- diferenciabilidade da soma e gH-diferença de duas funções de valor intervalar gH-diferenciáveis; também para o pro duto e composição de uma função real diferenciável e uma função de valor intervalar gH diferenciável. Em segundo lugar, a Tese e dedicada a obtenção de condições necessárias e suficientes para problemas de otimização com funções objetivas de valor intervalar. Essas funções objetivas são obtidas a partir de funções contínuas usando aritmética intervalar restrita. Damos um conceito de derivada para esta classe de funções de valor intervalar e, em seguida, introduzimos o conceito de ponto estacionário. Encontramos as condições necessárias com base na definição dos pontos estacionários e provamos que essas condições também são suficientes nas noções de convexidade generalizada. Obtemos também condições necessárias e suficientes para o problema de otimização intervalar com restrições. E, finalmente, lidamos com o espaço quociente de intervalos I em relação a família de intervalos simétricos e dado um conceito de diferenciabilidade para funções de classes de equivalência, fazemos uma comparação com outros conceitos de diferenciabilidade. Alguns exemplos e contraexemplos ilustram os resultados obtidos.