Análise da solução de equações lineares com coeficientes intervalares em diferentes aritméticas intervalares

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Finger, Alice Fonseca
Orientador(a): Loreto, Aline Brum
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Centro de Desenvolvimento Tecnológico
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/handle/prefix/4825
Resumo: Quando se trabalha com números de ponto flutuante o resultado é apenas uma aproximação de um valor real e erros gerados por arredondamentos ou por instabilidade dos algoritmos podem levar a resultados incorretos. Utilizando-se intervalos para representação dos números reais, é possível controlar a propagação desses erros. A aritmética intervalar mais conhecida e utilizada na literatura surgiu em 1966, definida por Moore. Porém, trabalhos recentes mostram diferentes aritméticas intervalares sendo aplicadas no lugar da aritmética de Moore, uma vez que ela apresenta diversas restrições, retornando muitas vezes resultados incompletos, inclusive em equações simples, como no caso das equações lineares. Diante de diversas aritméticas intervalares presentes na literatura, o objetivo principal da tese é analisar as soluções de equações lineares com coeficientes intervalares nas seguintes aritméticas: Moore com Teoria das Aproximações Intervalares, Markov, Affine, Constrained Interval Arithmetic e Relative Distance Measure e investigar qual provê uma solução completa para resolver tais equações. As análises das formas genéricas de solução das equações lineares, juntamente com a aplicação de um exemplo numérico demonstram que, para as equações lineares A + X = B, AX + B = C,AX + BX = C e AX + B = CX + D somente as aritméticas de Moore com Teoria das Aproximações Intervalares, CIA e RDM retornam solução completa para as quatro equações. Com a finalidade de complementar este resultado, desenvolvemos análise de complexidade de cada solução completa nas aritméticas intervalares de Moore com Teoria das Aproximações Intervalares, CIA e RDM para investigar o esforço computacional de computar cada solução, obtendo como resultado para aritmética de Moore com Teoria das Aproximações Intervalares, ordem constante de complexidade, e ordem linear para as aritméticas CIA e RDM. Além disso, é importante observar que o problema de calcular a solução completa para equações lineares com coeficientes intervalares é dito tratável ou computável. Após as análises das soluções e complexidade verifica-se que a aritmética de Moore, sempre que possível, deve ser utilizada para obter a solução completa. Já nos casos onde Moore não retorna solução completa, CIA e RDM são as aritméticas indicadas para solução.