Modelos híbridos de séries temporais aplicados ao sistema automotivo On-Board Diagnostics

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: ALMEIDA, Diogo Medeiros de
Orientador(a): CUNHA, Daniel Carvalho da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/32682
Resumo: Uma característica desejada dos sistemas de diagnóstico automotivo é fazer previsões de falhas para evitar problemas inesperadas no veículo, minimizar os custos de reparo e assegurar um automóvel mais seguro aos motoristas. Para prognosticar falhas automotivas é necessário um sistema que inicialmente seja capaz de prever dados automotivos para posteriormente avaliar com um classificador se o dado do preditor é um evento anormal ou não. Com base nisso, o objetivo deste trabalho é realizar um estudo sobre o preditor desse sistema a partir da análise de modelos híbridos inteligentes de séries temporais para prever dados em tempo real de três sensores veiculares: temperatura do líquido de arrefecimento do motor, relação Ar-Combustível (A/C) na combustão interna do motor e tensão da bateria do automóvel. Os resultados mostraram que, em geral, combinar previsores da série temporal com previsores dos resíduos é uma abordagem que merece atenção e deve ser considerada no contexto dos dados automotivos. Além disso, a combinação alternativa de modelos não lineares para a série com modelos lineares para os resíduos sugere uma proposta a ser investigada em outras aplicações.