Modelos híbridos de séries temporais aplicados ao sistema automotivo On-Board Diagnostics
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/32682 |
Resumo: | Uma característica desejada dos sistemas de diagnóstico automotivo é fazer previsões de falhas para evitar problemas inesperadas no veículo, minimizar os custos de reparo e assegurar um automóvel mais seguro aos motoristas. Para prognosticar falhas automotivas é necessário um sistema que inicialmente seja capaz de prever dados automotivos para posteriormente avaliar com um classificador se o dado do preditor é um evento anormal ou não. Com base nisso, o objetivo deste trabalho é realizar um estudo sobre o preditor desse sistema a partir da análise de modelos híbridos inteligentes de séries temporais para prever dados em tempo real de três sensores veiculares: temperatura do líquido de arrefecimento do motor, relação Ar-Combustível (A/C) na combustão interna do motor e tensão da bateria do automóvel. Os resultados mostraram que, em geral, combinar previsores da série temporal com previsores dos resíduos é uma abordagem que merece atenção e deve ser considerada no contexto dos dados automotivos. Além disso, a combinação alternativa de modelos não lineares para a série com modelos lineares para os resíduos sugere uma proposta a ser investigada em outras aplicações. |