Um neurônio artificial morfológico-linear com aprendizagem baseada em gradiente descendente para previsão de séries temporais financeiras em baixa frequência

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: CAMARA, Rômulo Calado Pantaleão
Orientador(a): ARAÚJO, Cristiano Coelho de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Programa de Pos Graduacao em Ciencia da Computacao
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/31387
Resumo: Atualmente existe um grande interesse da sociedade em encontrar meios de prever o futuro do mercado de ações para otimizar o processo de tomada de decisão visando a maximi- zação do lucro em seus investimentos. Esta Tese apresenta um novo modelo de neurô- nio artificial morfológico-linear, denominado de Perceptron Morfológico Crescente Geral (Perceptron Morfológico Crescente Geral - General Increasing Morphological Perceptron (GIMP)), para previsão de séries temporais financeiras em baixa-frequência (diária, se- manal e quinzenal). O neurônio GIMP é composto por uma combinação balanceada entre um módulo linear e um módulo não-linear crescente. Além disso, para o projeto do modelo proposto, é apresentado um processo de aprendizagem baseado em gradiente descendente com ajuste automático de fase temporal. Também é realizada uma análise experimental utilizando um conjunto de séries temporais financeiras provenientes do mercado de ações brasileiro, em baixa-frequência e os resultados obtidos foram analisados, utilizando um conjunto relevante de medidas de desempenho, e comparados aqueles obtidos utilizando modelos clássicos da literatura de previsão de séries temporais financeiras. Os resultados mostraram ganhos de desempenho de previsão de mais de 200% em relação aos modelos classícos estudados.