Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
SERGIO, Anderson Tenório |
Orientador(a): |
LUDERMIR, Teresa Bernarda |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/25449
|
Resumo: |
A previsão de séries temporais é um importante campo de estudo em aprendizado de máquina. Já que a literatura mostra diversas técnicas para a solução desse problema, combinar saídas de diferentes modelos é uma estratégia simples e robusta. Entretanto, mesmo quando se usam tais combinadores, o experimentador pode encarar o seguinte dilema: qual técnica deve ser usada para combinar os preditores individuais? Este trabalho apresenta um arcabouço para seleção dinâmica de combinadores de previsão de séries temporais. O processo de seleção dinâmica pode ser resumido em três fases. A primeira delas é responsável pela geração do conjunto de especialistas base, sendo que esse conjunto pode ser formado por modelos de mesma natureza ou heterogêneos. A diversidade dos especialistas é importante em ambas as situações. A segunda fase, de seleção, é realizada através da estimação da competência dos modelos disponíveis no conjunto gerado na primeira fase, em respeito a regiões locais do espaço de características. No caso da seleção dinâmica, a escolha dos modelos é realizada para cada padrão de teste, ao invés de utilizar a mesma seleção para todos eles (seleção estática). A terceira fase é a integração dos modelos selecionados. No método proposto, foram utilizados como preditores individuais modelos estatísticos (lineares e não-lineares) e de aprendizado de máquina. Em relação aos combinadores, foram utilizadas algumas técnicas que usam uma base de dados independente para determinação dos pesos da combinação linear e outros métodos que não possuem essa necessidade. Foram propostos dois algoritmos de seleção dinâmica, baseados em acurácia e comportamento. Para cada um deles, foram implementadas variações no que diz respeito ao uso de todos ou dos melhores preditores e combinadores do comitê. Para testar o método proposto, dez séries temporais caóticas foram utilizadas: Mackey-Glass, Lorenz, Rossler, Henon, Periodic, Quasi-Periodic, Laser e três séries produzidas a partir de exames de eletroencefalograma. A previsão de séries caóticas tem importância para várias áreas de atuação humana como astronomia e processamento de sinais, sendo que algumas das séries que foram testadas também funcionam como benchmark em diversas pesquisas. As melhores variações dos algoritmos de seleção dinâmica propostos alcançaram resultados satisfatórios em todas as bases de dados. Após a realização de testes estatísticos, comprovou-se que os métodos foram superiores aos melhores combinadores e preditores base na maioria dos cenários, para previsão de curto e longo alcance. |